Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
1.
Psychol Med ; : 1-11, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563283

RESUMO

BACKGROUND: The comorbidity between schizophrenia (SCZ) and inflammatory bowel disease (IBD) observed in epidemiological studies is partially attributed to genetic overlap, but the magnitude of shared genetic components and the causality relationship between them remains unclear. METHODS: By leveraging large-scale genome-wide association study (GWAS) summary statistics for SCZ, IBD, ulcerative colitis (UC), and Crohn's disease (CD), we conducted a comprehensive genetic pleiotropic analysis to uncover shared loci, genes, or biological processes between SCZ and each of IBD, UC, and CD, independently. Univariable and multivariable Mendelian randomization (MR) analyses were applied to assess the causality across these two disorders. RESULTS: SCZ genetically correlated with IBD (rg = 0.14, p = 3.65 × 10−9), UC (rg = 0.15, p = 4.88 × 10−8), and CD (rg = 0.12, p = 2.27 × 10−6), all surpassed the Bonferroni correction. Cross-trait meta-analysis identified 64, 52, and 66 significantly independent loci associated with SCZ and IBD, UC, and CD, respectively. Follow-up gene-based analysis found 11 novel pleiotropic genes (KAT5, RABEP1, ELP5, CSNK1G1, etc) in all joint phenotypes. Co-expression and pathway enrichment analysis illustrated those novel genes were mainly involved in core immune-related signal transduction and cerebral disorder-related pathways. In univariable MR, genetic predisposition to SCZ was associated with an increased risk of IBD (OR 1.11, 95% CI 1.07­1.15, p = 1.85 × 10−6). Multivariable MR indicated a causal effect of genetic liability to SCZ on IBD risk independent of Actinobacteria (OR 1.11, 95% CI 1.06­1.16, p = 1.34 × 10−6) or BMI (OR 1.11, 95% CI 1.04­1.18, p = 1.84 × 10−3). CONCLUSIONS: We confirmed a shared genetic basis, pleiotropic loci/genes, and causal relationship between SCZ and IBD, providing novel insights into the biological mechanism and therapeutic targets underlying these two disorders.

2.
Front Immunol ; 15: 1369311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601162

RESUMO

Background: Coronavirus disease (COVID-19), caused by SARS-CoV-2, has emerged as a infectious disease, coexisting with widespread seasonal and sporadic influenza epidemics globally. Individuals living with HIV, characterized by compromised immune systems, face an elevated risk of severe outcomes and increased mortality when affected by COVID-19. Despite this connection, the molecular intricacies linking COVID-19, influenza, and HIV remain unclear. Our research endeavors to elucidate the shared pathways and molecular markers in individuals with HIV concurrently infected with COVID-19 and influenza. Furthermore, we aim to identify potential medications that may prove beneficial in managing these three interconnected illnesses. Methods: Sequencing data for COVID-19 (GSE157103), influenza (GSE185576), and HIV (GSE195434) were retrieved from the GEO database. Commonly expressed differentially expressed genes (DEGs) were identified across the three datasets, followed by immune infiltration analysis and diagnostic ROC analysis on the DEGs. Functional enrichment analysis was performed using GO/KEGG and Gene Set Enrichment Analysis (GSEA). Hub genes were screened through a Protein-Protein Interaction networks (PPIs) analysis among DEGs. Analysis of miRNAs, transcription factors, drug chemicals, diseases, and RNA-binding proteins was conducted based on the identified hub genes. Finally, quantitative PCR (qPCR) expression verification was undertaken for selected hub genes. Results: The analysis of the three datasets revealed a total of 22 shared DEGs, with the majority exhibiting an area under the curve value exceeding 0.7. Functional enrichment analysis with GO/KEGG and GSEA primarily highlighted signaling pathways associated with ribosomes and tumors. The ten identified hub genes included IFI44L, IFI44, RSAD2, ISG15, IFIT3, OAS1, EIF2AK2, IFI27, OASL, and EPSTI1. Additionally, five crucial miRNAs (hsa-miR-8060, hsa-miR-6890-5p, hsa-miR-5003-3p, hsa-miR-6893-3p, and hsa-miR-6069), five essential transcription factors (CREB1, CEBPB, EGR1, EP300, and IRF1), and the top ten significant drug chemicals (estradiol, progesterone, tretinoin, calcitriol, fluorouracil, methotrexate, lipopolysaccharide, valproic acid, silicon dioxide, cyclosporine) were identified. Conclusion: This research provides valuable insights into shared molecular targets, signaling pathways, drug chemicals, and potential biomarkers for individuals facing the complex intersection of COVID-19, influenza, and HIV. These findings hold promise for enhancing the precision of diagnosis and treatment for individuals with HIV co-infected with COVID-19 and influenza.


Assuntos
COVID-19 , Infecções por HIV , Influenza Humana , MicroRNAs , Humanos , Influenza Humana/genética , COVID-19/genética , SARS-CoV-2 , Biologia Computacional , MicroRNAs/genética , Fatores de Transcrição , Regulação da Expressão Gênica , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética
3.
Purinergic Signal ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642324

RESUMO

In clinical practice, depression and anxiety frequently coexist, and they are both comorbid with somatic diseases. The P2X7R is an adenosine 5'-triphosphate (ATP)-gated non-selective cation channel that is widely expressed in immune-related cells. Under conditions of stress, chronic pain, and comorbid chronic physical illness, P2X7R activation in glial cells leads to neuroinflammation. This could contribute to the development of anxiety and depression-related emotional disturbances. Previous studies have shown that the P2X7 receptor (P2X7R) plays an important role in the pathogenesis of both anxiety and depression. Thus, the P2X7R may play a role in the comorbidity of anxiety and depression. Positron emission tomography can be used to assess the degree and location of neuroinflammation by monitoring functional and expression-related changes in P2X7R, which can facilitate clinical diagnoses and guide the treatment of patients with anxiety and depression. Moreover, single nucleotide polymorphisms (SNPs) in the P2X7R gene are associated with susceptibility to different types of psychiatric disorders. Thus, evaluating the SNPs of the P2X7R gene could enable personalized mood disorder diagnoses and treatments. If the P2X7R were set as a therapeutic target, selective P2X7R antagonists may modulate P2X7R function, thereby altering the balance of intra- and extra-cellular ATP. This could have therapeutic implications for treating anxiety and depression, as well as for pain management. According to in vitro and in vivo studies, the P2X7R plays an important role in anxiety and depression. In this review, we consider the potential of the P2X7R as a therapeutic target for comorbid anxiety and depression, and discuss the potential diagnostic and therapeutic value of this receptor.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38615695

RESUMO

BACKGROUND: Predicting the long-term survival in adenoid cystic carcinoma (ACC) patients remains challenging. Inflammatory cell-based indices are emerging as prognostic indicators of oncology. PURPOSE: This study aimed to determine the associations between the preoperative systemic inflammatory response index (SIRI) and the systemic immunoinflammatory index (SII) and the 10-year survival rates in patients with ACC of the head and neck (ACCHN). STUDY DESIGN, SETTING, SAMPLE: This retrospective cohort study comprised ACCHN patients treated at the Chinese People's Liberation Army General Hospital between November 2003 and December 2020. PREDICTOR VARIABLE: The inflammatory response, assessed using the SIRI and SII, was the predictor variable. The optimal cutoff values were based on the maximum Youden index values (sensitivity + specificity-1). The patients were divided into two groups each, based on the SIRI (low, ≤ 0.15) and (high, > 0.15), and SII (low, ≤ 562.8 and high, > 562.8) values. MAIN OUTCOME VARIABLE(S): Overall survival (OS), or the number of days, weeks, or months between treatment initiation and death (or the last follow-up date), was the primary outcome variable. COVARIATES: The covariates were classified as demographic (age, gender, body mass index), medical (hypertension, diabetes), inflammatory (neutrophils, lymphocytes, monocytes, platelets, lymphocyte-monocyte ratio, platelet-lymphocyte ratio, neutrophil-lymphocyte ratio), and perioperative (tumor stage, lymph node metastasis, tumor size, treatment type). ANALYSES: Descriptive, univariate, and multivariate Cox proportional risk regression analyses were performed to determine whether the SIRI and SII were independent prognostic factors for OS. Kaplan-Meier survival curves and log-rank tests were used to determine their associations with the OS. RESULTS: The study sample comprised 162 patients (mean age, 52 ± 14; males, 39.5%). The median follow-up time was 6.81 ± 0.23, and the 10-year OS rate was 7.68 ± 0.25. The low and high SIRI groups comprised 109 and 53 patients, while the low and high SII groups comprised 116 and 46 patients, respectively. SIRI was identified as a prognostic factor (P < .01; hazard ratio, 2.45; 95% confidence interval, 1.35-4.45). CONCLUSION AND RELEVANCE: The SIRI has the advantages of reproducibility, convenience, noninvasiveness, and affordability, making it a promising prognostic inflammatory index for patients with ACCHN.

5.
Clin Drug Investig ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615091

RESUMO

BACKGROUND: Tegoprazan is a potassium-competitive acid blocker that inhibits gastric acid and which may be used for eradicating Helicobacter pylori. This study focuses on the pharmacokinetic interaction and safety between tegoprazan and the combination of clarithromycin, amoxicillin and bismuth in healthy Chinese subjects. METHODS: An open-label, three-period, single-center, multiple-dosage, single-sequence, phase I trial was conducted in 22 healthy subjects. In period 1, the subjects took tegoprazan 50 mg twice daily for 7 days, and in period 2 they were administered clarithromycin 500 mg, amoxicillin 1000 mg and bismuth potassium citrate 600 mg twice daily for 7 days (days 14-20). Tegoprazan, clarithromycin, amoxicillin and bismuth potassium citrate were then administered in combination for 7 days (days 21-27) in period 3. Blood samples were collected up to 12 h after the last dose of each period. Safety assessments were performed in each period. RESULTS: The geometric mean ratios (GMRs) [90% confidence interval (CI)] of maximum plasma concentration at steady state (Cmax,ss) and area under the plasma concentration-time curve over the dosing interval (AUCτ) at steady state were 195.93% (175.52-218.71%) and 287.54% (263.28-314.04%) for tegoprazan and 423.23% (382.57-468.22%) and 385.61% (354.62-419.30%) for tegoprazan metabolite M1, respectively. The GMRs (90% CI) of Cmax,ss and AUCτ were 83.69% (77.44-90.45%) and 110.30% (102.74-118.41%) for clarithromycin, 126.25% (114.73-138.93%) and 146.94% (135.33-159.55%) for 14-hydroxyclarithromycin, 75.89% (69.73-82.60%) and 94.34% (87.94-101.20%) for amoxicillin, and 158.43% (125.43-200.11%) and 183.63% (156.42-215.58%) for bismuth, respectively. All reported adverse events were mild. The frequency of adverse events during the coadministration stage was not higher than that during the single- or triple-drug administration stages. CONCLUSION: The plasma exposure of tegoprazan, M1, 14-hydroxyclarithromycin and bismuth was increased after the coadministration of tegoprazan, clarithromycin, amoxicillin and bismuth. The coadministration exhibited favorable safety and tolerability. CLINICAL TRIALS REGISTRATION: CTR20230643.

7.
Medicine (Baltimore) ; 103(15): e37643, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608104

RESUMO

To investigate the status of the drug-resistant tuberculosis (DR-TB) among children in Sichuan, and to find out the risk factors and high-risk population related to drug resistance among children. The clinical data of tuberculosis patients ≤14 years old with culture-confirmed tuberculosis hospitalized in Chengdu Public Health Clinical Center from January 2013 through December 2022 were collected. Clinical data such as gender, age, ethnicity, history of anti-TB treatment, history of exposure to tuberculosis, nutritional status, and specific drug resistance of the children were collected and recorded. The drug resistance of children in different age groups (0-4 years old, 5-9 years old, 10-14 years old) and different periods (2013-2017 and 2018-2022) were grouped and compared. Logistic regression analysis was to analyze analysis of risk factors of drug resistance in children. A total of 438 children with culture-confirmed tuberculosis were screened. Among them, 26.19% (11/42) were 0 to 4 years old, 33.33% (22/66) were 5 to 9 years old, and 36.67% (121/330) were 10 to 14 years old among the resistant children. There was no statistically significant difference in the resistance rate among the 3 groups (P = .385). The proportions of DR-TB, monoresistant tuberculosis, polydrug-resistant tuberculosis were decreased during 2019 to 2022 compared with 2013 to 2017 (P < .0001). The resistance rates of drug resistant, monoresistant, polydrug-resistant, isoniazid-resistant, and rifampicin resistant during 2018 to 2022 were decreased compared with those from 2013 to 2017 (P < .05), but the multi-drug resistance rate was not decreased (P = .131, without statistical difference). The results of logistic regression analysis showed that male gender OR = 1.566 (95% CI 1.035-2.369), a history of antituberculosis therapy OR = 4.049 (95% CI 1.442-11.367), and pulmonary and extrapulmonary tuberculosis OR = 7.335 (95% CI 1.401-38.392) were risk factors for the development of drug resistance; but fever OR = 0.581 (95% CI 0.355-0.950) was Protective factor. The total drug resistance rate of children in Sichuan showed a downward trend, but the rate of multi-drug-resistant tuberculosis was still at a high level, and the form of drug resistance was still severe. Absence of fever, male, retreatment, and pulmonary concurrent with extrapulmonary tuberculosis are risk factors for DR-TB in children.


Assuntos
Tuberculose Extrapulmonar , Tuberculose Resistente a Múltiplos Medicamentos , Criança , Humanos , Masculino , Recém-Nascido , Lactente , Pré-Escolar , Adolescente , Estudos Retrospectivos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Fatores de Risco , China/epidemiologia , Febre
8.
Pest Manag Sci ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554028

RESUMO

BACKGROUND: Citrus huanglongbing (HLB) is a devastating disease caused by Candidatus Liberibacter asiaticus (CLas) that affects the citrus industry. In nature, CLas relies primarily on Diaphorina citri Kuwayama as its vector for dissemination. After D. citri ingests CLas-infected citrus, the pathogen infiltrates the insect's body, where it thrives, reproduces, and exerts regulatory control over the growth and metabolism of D. citri. Previous studies have shown that CLas alters the composition of proteins in the saliva of D. citri, but the functions of these proteins remain largely unknown. RESULTS: In this study, we detected two proteins (DcitSGP1 and DcitSGP3) with high expression levels in CLas-infected D. citri. Quantitative PCR and Western blotting analysis showed that the two proteins were highly expressed in the salivary glands and delivered into the host plant during feeding. Silencing the two genes significantly decreased the survival rate for D. citri, reduced phloem nutrition sucking and promoted jasmonic acid (JA) defenses in citrus. By contrast, after overexpressing the two genes in citrus, the expression levels of JA pathway-associated genes decreased. CONCLUSION: Our results suggest that CLas can indirectly suppress the defenses of citrus and support feeding by D. citri via increasing the levels of effectors in the insect's saliva. This discovery facilitates further research into the interaction between insect vectors and pathogens. © 2024 Society of Chemical Industry.

9.
Orthop Surg ; 16(4): 851-863, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38384172

RESUMO

OBJECTIVE: The connection between alterations in the disc structure following percutaneous endoscopic lumbar discectomy (PELD) and symptoms in patients postsurgery has not been reported yet. The purpose of the present study was to discuss the potential correlation between the changes in the morphological characteristics of various reference surfaces of the intervertebral disc after percutaneous endoscopic lumbar discectomy (PELD) and clinical outcomes, to identify the morphological parameters that affect efficacy and provide an evidence-based foundation for assessing postoperative efficacy. METHODS: From October 2019 to October 2021, after percutaneous endoscopic lumbar discectomy (PELD), 98 individuals were enrolled. MRI DICOM data of the lumbar spine were obtained before and after surgery, specifically around 3 months. The morphological parameters of the operated and adjacent segments of the discs were measured using T2-weighted images from three reference planes. Outcomes were assessed using the Oswestry disability index (ODI), visual analogue pain scores for the back and leg (VAS-back/VAS-leg), Japanese Orthopaedic Association (JOA) scores, and recovery rates. Postoperative changes in disc parameters and outcomes were compared between patients with different severity and types of LDH based on the MSU staging. Patients completed the questionnaire during outpatient follow-up appointments 3, 6, and 12 months after the surgery. The follow-up period was 14.69 ± 4.21 months, ranging from 12 to 24 months. RESULTS: Parameters such as area and circumference of intervertebral discs in the cross-section were not associated with the change in the efficacy index. Postoperatively, a negative correlation between the variation of the disc height, disc height index, and protrusion distance and the difference in VAS scores for low back pain at 3 and 6 months was observed among the two sagittal change parameters. Differences between changes in disc imaging parameters and postoperative efficacy were not statistically significant between various types of lumbar disc herniation. CONCLUSION: For the patients after percutaneous endoscopic lumbar discectomy, the changes in parameters such as disc area and circumference in the cross-sectional plane are not associated with efficacy, and the changes in disc height and herniation distance in the sagittal plane provide a morphologic basis for the assessment of short-term postoperative efficacy. In addition, the changes in disc morphologic parameters and postoperative efficacy do not differ between various types of lumbar disc herniation.


Assuntos
Discotomia Percutânea , Deslocamento do Disco Intervertebral , Humanos , Seguimentos , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Deslocamento do Disco Intervertebral/cirurgia , Deslocamento do Disco Intervertebral/etiologia , Discotomia Percutânea/métodos , Estudos Transversais , Endoscopia/métodos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Resultado do Tratamento , Estudos Retrospectivos , Discotomia/métodos
10.
Front Immunol ; 15: 1323307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404571

RESUMO

Introduction: In 2021, the World Health Organization published a new classification system for central nervous system tumors. This study reclassified the adult diffuse glioma (ADG) into astrocytoma, oligodendroglioma, and glioblastoma (GBM) according to the new tumor classification. Methods: The association of TERT promoter (pTERT) mutation, MGMT methylation, and CD47/TIGIT expression with patient prognosis was investigated. Results: Immunohistochemical analysis showed that the expression levels of CD47 and TIGIT in tumor tissues were significantly higher than those in normal brain tissues. CD47 levels were higher in GBM and grade 4 astrocytoma tissues. TIGIT expression was also higher in patients with GBM. The high expressions of CD47, TIGIT, and CD47/TIGIT were positively correlated with MGMT unmethylation but not pTERT mutation. Moreover, MGMT unmethylation was associated with poor overall survival in astrocytoma. High CD47, TIGIT, and CD47/TIGIT levels were associated with significantly reduced survival in ADG and GBM. GBM, MGMT unmethylation, and high CD47 expression were independent prognostic factors for overall survival in ADG. Discussion: Collectively, these results showed that the MGMT unmethylation and high levels of CD47 and TIGIT are associated with a poor prognosis in ADG. Patients with high CD47 and TIGIT expression may benefit from anti-CD47 and TIGIT immunotherapy.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Humanos , Neoplasias Encefálicas/patologia , Antígeno CD47/genética , Glioma/patologia , Glioblastoma/genética , Prognóstico , Metilases de Modificação do DNA/genética , Proteínas Supressoras de Tumor/genética , Enzimas Reparadoras do DNA/genética , Receptores Imunológicos/genética
11.
Front Neurol ; 15: 1322228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322584

RESUMO

Background: Inflammation plays a pivotal role in the pathogenesis of Parkinson's disease (PD). However, the correlation between peripheral inflammatory markers and the severity of PD remains unclear. Methods: The following items in plasma were collected for assessment among patients with PD (n = 303) and healthy controls (HCs; n = 303) were assessed for the neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR) and neutrophil-to-high-density-lipoprotein ratio (NHR) in plasma, and neuropsychological assessments were performed for all patients with PD. Spearman rank or Pearson correlation was used to evaluate the correlation between the NLR, the LMR and the NHR and the severity of PD. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic performance of the NLR, LMR and NHR for PD. Results: The plasma NLR and NHR were substantially higher in patients with PD than in HCs, while the plasma LMR was substantially lower. The plasma NLR was positively correlated with Hoehn and Yahr staging scale (H&Y), Unified Parkinson's Disease Rating Scale (UPDRS), UPDRS-I, UPDRS-II, and UPDRS-III scores. Conversely, it exhibited a negative relationship with Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores. Furthermore, the plasma NHR was positively correlated with H&Y, UPDRS, UPDRS-I, UPDRS-II and UPDRS-III scores. Moreover, negative associations were established between the plasma LMR and H&Y, UPDRS, UPDRS-I, UPDRS-II, and UPDRS-III scores. Finally, based on the ROC curve analysis, the NLR, LMR and NHR exhibited respectable PD discriminating power. Conclusion: Our research indicates that a higher NLR and NHR and a lower LMR may be relevant for assessing the severity of PD and appear to be promising disease-state biomarker candidates.

12.
Diabetes Metab Syndr Obes ; 17: 575-584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343582

RESUMO

Background: Type 2 diabetes (T2DM) combined nonalcoholic fatty liver disease (NAFLD) are characterized by metabolic disruptions. Liraglutide has been proved to be effective in T2DM. If LRG could regulate NAFLD combined T2DM has not been reported. Methods: Intraperitoneal injection of 1% streptozotocin (STZ) plus high-sugar and high-fat diet was used to induce NAFLD combined T2DM animal model. Palmitic acid (200 µmol/L) and glucose (25 mmol/L) incubation were used to induce cell model. The cell apoptosis, mRNA and protein expression were measured through flow cytometry, PCR, and Western blotting, respectively. Results: Liraglutide significantly improved the liver injury of NAFLD combined T2DM rats, but Com-C reversed the effect of liraglutide. The decreased AMPK/mTOR signaling pathway in the NAFLD combined T2DM animals was greatly activated by liraglutide. Com-C reversed the protection effects of liraglutide on palmitic acid+glucose induced cell damage. Conclusion: Liraglutide could greatly alleviate the damage caused by NAFLD+T2DM and palmitic acid+glucose. The protection effects of liraglutide were greatly inhibited by suppressing AMPK/mTOR signaling pathway. This research might provide a novel therapeutic strategy for the prevention and treatment of NAFLD combined T2DM disease.

13.
Sci Rep ; 14(1): 462, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172171

RESUMO

Facing the shortage of special building materials packaging machinery with thermal insulation and low intelligence, this paper designs a set of mechanical and electrical integration packaging unit control system to reduce the risk of material transportation for different stakeholders. According to risk management tools, the system takes Mitsubishi PLC as the control core and combines with communication module, servo motor drive system and touch screen man-machine interface to realize the risk simulation and automatic control of the packaging unit. The simulation results of PID control model show that the parameters such as speed and torque can be stabilized in a relatively short period of time when the load is suddenly changed within 1.5 s. Theoretical verification of the system has small steady-state error, rapid response, and good control effect. The man-machine interface design was carried out and the actual corresponding test experiment was carried out. The experimental results showed that the overall operation rate of the packaging unit system reached 98.15%, the pass rate was 99.03%, and the production capacity was about 9600 packs/hour, which met the production requirements. The control system of the building material packaging unit designed in this paper realizes the equipment intelligence, has a high degree of automation, and shows good potential application value in the aspects of building information, reduction of construction risks and manufacturing intelligence.

14.
Acta Trop ; 251: 107114, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38190929

RESUMO

BACKGROUND: Visceral leishmaniasis is a neglected tropical disease affecting millions of people worldwide. Macrophages serve as the primary host cells for L. donovani, the immune response capability of these host cells is crucial for parasites' intracellular survival. L. donovani peptidyl-prolyl cis/trans isomerase Cyclophilin A (LdCypA) is a key protein for L. donovani intracellular proliferation, while the molecular mechanism conducive to intracellular survival of parasites remains elusive. METHODS: In this study, we generated a macrophage cell line overexpressing LdCyPA to investigate its role in controlling host immunity and promoting intracellular immune escape of L. donovani. RESULTS: It was discovered that the overexpression of the LdCyPA cell line regulated the host immune response following infection by downregulating the proportion of M1-type macrophages, promoting the secretion of the anti-inflammatory factor IL-4, and inhibiting the secretion of pro-inflammatory factors like IL-12, IFN-γ, TNF-α, and INOS. Transcriptome sequencing and mechanistic validation, meanwhile, demonstrated that cells overexpressing LdCyPA controlled the immune responses that followed infection by blocking the phosphorylation of P38 and JNK1/2 proteins in the MAPK signaling pathway and simultaneously increasing the phosphorylation of ERK proteins, which helped the L. donovani escape immune recognition. CONCLUSION: Our findings thus pave the way for the development of host-directed antiparasitic drugs by illuminating the pro-Leishmania survival mechanism of L. donovani cyclophilin A and exposing a novel immune escape strategy for L. donovani that targets host cellular immune regulation.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Parasitos , Humanos , Animais , Leishmania donovani/genética , Ciclofilina A , Leishmaniose Visceral/parasitologia , Macrófagos , Interleucina-12
15.
Int J Biol Macromol ; 261(Pt 2): 129706, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272422

RESUMO

A new generation of food packaging films is gradually replacing traditional plastic packaging films because of their biodegradability, safety, and some functional properties such as anti-bacterial and oxidant resistance. In the present work, an antibacterial packing film based on amylose starch and 2-hydroxypropyl-trimethylammonium chloride chitosan (HTCC) was prepared for meat preservation. The interfacial bonding mechanism between amylose, HTCC, and glutaraldehyde (GA) was determined experimentally and through molecular dynamics (MD) simulation. The macromolecular chains of amylose starch and HTCC became entangled via inter-molecular H-bonds and then cross-linked with GA via the Schiff base reaction. The interaction of amylose starch and HTCC improved the mechanical properties of the amylose films. Compared with the amylose films, the tensile strength and elongation at break of the optimal HTCC/amylose films reached to 16.13 MPa (an increase of 206.65 %) and 53.86 % (an increase of 109.49 %). The HTCC/amylose films were found to provide obvious bacteriostatic performance, a relatively low cytotoxicity, the lower transmittance in the UV region, and thus the ability to enhance the preservation of fresh meat. These excellent characteristics therefore suggest that HTCC/amylose films might be promising candidates for application in antibacterial food packaging films.


Assuntos
Amilose , Quitosana , Amilose/química , Amido/química , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos , Compostos de Amônio Quaternário , Carne
16.
IEEE Trans Biomed Circuits Syst ; 18(1): 16-26, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37527295

RESUMO

Brain-inspired structured neural circuits are the cornerstones of both computational and perceived intelligence. Real-time simulations of large-scale high-dimensional neural populations with complex nonlinearities pose a significant challenge. Taking advantage of distributed computations using embedded multi-cores, we propose an ARM-based scalable multi-hierarchy parallel computing platform (EmPaas) for neural population simulations. EmPaas is constructed using 340 ARM Cortex-M4 microprocessors to achieve high-speed and high-accuracy parallel computing. The tree-two-dimensional grid-like hybrid topology completes the overall construction, reducing communication strain and power consumption. As an instance of embedded computing, the optimized model for a biologically plausible basal ganglia-thalamus (BG-TH) network is deployed into this platform to verify the performance. At an operating frequency of 168 MHz, the BG-TH network consisting of 4000 Izhikevich neurons is simulated in the platform for 3000 ms with a power consumption of 56.565 mW per core and an actual time of 2748.57 ms, which shows the parallel computing approach significantly improves computational efficiency. EmPaas can meet the requirement of real-time performance with the maximum amount of 2000 Izhikevich neurons loaded in each Extended Community Unit (ECUnit), which provides a new practical method for research in large-scale brain network simulation and brain-inspired computing.


Assuntos
Sistemas Computacionais , Redes Neurais de Computação , Simulação por Computador , Neurônios/fisiologia , Encéfalo
17.
Comb Chem High Throughput Screen ; 27(1): 127-135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37264620

RESUMO

OBJECTIVES: Osteoarthritis (OA) is one of the most common chronic and progressive joint diseases characterized by cartilage degeneration and chondrocyte death. In this study, we aimed to identify the modulation effect of miR-145 on chondrocytes' autophagy during the development of OA. BACKGROUND: Osteoarthritis (OA) is one of the most prevalent types of chronic and progressive joint disorder with the symptoms of joint pain and stiffness, and it leads to disability at the end stage. In recent years, microRNA-145 (miR-145) has been found to activate autophagy in various cell types, including mesenchymal stem cells, cardiomyocytes, and osteosarcoma cells. However, it is unknown whether miR-145 regulates the progression of OA by influencing chondrocyte autophagy. METHODS: Before investigating the regulatory effect of miR-145 on the autophagic activity of chondrocytes, the expression of miR-145 in human joint samples was analyzed. The targeting relationship between miR-145 and FRS2 was detected by dual luciferase assay. The effect of FRS2 and miR-145 on the autophagic activity of chondrocytes was observed by bidirectional expression of FRS2 and miR-145. RESULTS: The miR-145 expression and LC3-II/LC3-I ratio were significantly decreased and the SQSTM1 expression was increased in OA patients. The miR-145 overexpression in C20A4 cells increased LC3-II/LC3-I ratio, decreased SQSTM1 expression, and was positively correlated with autophagic activity. Under oxidative stress, miR-145 overexpression significantly improved chondrocyte viability through autophagy stimulation. FRS2 is a potential target of miR-145 via a binding sequence within its 3' UTR. FRS2 acts as the downstream mediator of miR-145 to suppress autophagy through activating PI3K/Akt/mTOR pathways. CONCLUSION: The miR-145 acts as a protective factor against chondrocytes by regulating miRFRS2- autophagy axis. The decrease of miR-145 in articular synovial fluid may turn out to be an important marker for early diagnosis of OA, and modulation of miR-145 may represent a promising therapeutic strategy for OA.


Assuntos
MicroRNAs , Osteoartrite , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Sequestossoma-1/metabolismo , Osteoartrite/metabolismo , Condrócitos/metabolismo , Autofagia/fisiologia , Apoptose , Proteínas de Membrana/genética , Proteínas Adaptadoras de Transdução de Sinal
18.
IEEE Trans Biomed Circuits Syst ; 18(1): 51-62, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37549075

RESUMO

The hippocampus provides significant inspiration for spatial navigation and memory in both humans and animals. Constructing large-scale spiking neural network (SNN) models based on the biological neural systems is an important approach to comprehend the computational principles and cognitive function of the hippocampus. Such models are usually implemented on neuromorphic computing platforms, which often have limited computing resources that constrain the achievable scale of the network. This work introduces a series of digital design methods to realize a Field-Programmable Gate Array (FPGA) friendly SNN model. The methods include FPGA-friendly nonlinear calculation modules and a fixed-point design algorithm. A brain-inspired large-scale SNN of ∼21 k place cells for path planning is mapped on FPGA. The results show that the path planning tasks in different environments are finished in real-time and the firing activities of place cells are successfully reproduced. With these methods, the achievable network size on one FPGA chip is increased by 1595 times with higher resource usage efficiency and faster computation speed compared to the state-of-the-art.


Assuntos
Algoritmos , Redes Neurais de Computação , Humanos , Animais , Neurônios , Encéfalo
19.
ACS Appl Bio Mater ; 7(1): 256-268, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38109849

RESUMO

Antimicrobial resistance is a serious problem in biomedical applications that seriously increases the risk of medical failure. Therefore, developing highly efficient antibacterial agents that inhibit the growth of multidrug-resistant bacteria is a long-standing research goal. In this report, a low-cytotoxicity and highly efficient alternative to antibiotics was designed and prepared using edible corn starch as the scaffold and 2-hydroxypropyl-trimethylammonium chloride chitosan (HTCC) as the antimicrobial agent. The HTCC/starch particles were found to have a positively charged surface over a wide pH range and to possess broad-spectrum and highly efficient antimicrobial properties. These particles inhibited the growth of standard Gram-positive and Gram-negative bacteria from the China Pharmacopoeia and a clinical multidrug-resistant bacterial strain. Moreover, after treating the HTCC/starch particles with simulated gastric fluid (SGF, pH 1.2) for 4 h, the growth of clinical multidrug-resistant Escherichia coli (NT 2036) was inhibited effectively, indicating that these particles tolerate a gastric acid environment. Although the mass of SGF-treated HTCC/starch particles required to achieve similar antibacterial activity was ∼20-fold that of chloramphenicol or ampicillin, antibiotic-containing products require considerable amounts of pharmaceutical excipients to prepare. Therefore, the HTCC/starch particles described herein are potentially cost-effective alternatives to antibiotics that resolve the antimicrobial resistance issue, especially for inhibiting the growth of pathogenic intestinal bacteria.


Assuntos
Anti-Infecciosos , Quitosana , Antibacterianos/farmacologia , Antibacterianos/química , Zea mays , Amido/farmacologia , Quitosana/química , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Anti-Infecciosos/farmacologia
20.
Proteins ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041394

RESUMO

NADH cytochrome b5 oxidoreductase (Ncb5or) is a cytosolic ferric reductase implicated in diabetes and neurological conditions. Ncb5or comprises cytochrome b5 (b5 ) and cytochrome b5 reductase (b5 R) domains separated by a CHORD-Sgt1 (CS) linker domain. Ncb5or redox activity depends on proper inter-domain interactions to mediate electron transfer from NADH or NADPH via FAD to heme. While full-length human Ncb5or has proven resistant to crystallization, we have succeeded in obtaining high-resolution atomic structures of the b5 domain and a construct containing the CS and b5 R domains (CS/b5 R). Ncb5or also contains an N-terminal intrinsically disordered region of 50 residues that has no homologs in other protein families in animals but features a distinctive, conserved L34 MDWIRL40 motif also present in reduced lateral root formation (RLF) protein in rice and increased recombination center 21 in baker's yeast, all attaching to a b5 domain. After unsuccessful attempts at crystallizing a human Ncb5or construct comprising the N-terminal region naturally fused to the b5 domain, we were able to obtain a high-resolution atomic structure of a recombinant rice RLF construct corresponding to residues 25-129 of human Ncb5or (52% sequence identity; 74% similarity). The structure reveals Trp120 (corresponding to invariant Trp37 in Ncb5or) to be part of an 11-residue α-helix (S116 QMDWLKLTRT126 ) packing against two of the four helices in the b5 domain that surround heme (α2 and α5). The Trp120 side chain forms a network of interactions with the side chains of four highly conserved residues corresponding to Tyr85 and Tyr88 (α2), Cys124 (α5), and Leu47 in Ncb5or. Circular dichroism measurements of human Ncb5or fragments further support a key role of Trp37 in nucleating the formation of the N-terminal helix, whose location in the N/b5 module suggests a role in regulating the function of this multi-domain redox enzyme. This study revealed for the first time an ancient origin of a helical motif in the N/b5 module as reflected by its existence in a class of cytochrome b5 proteins from three kingdoms among eukaryotes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...